Information about the Kentucky State University Cooperative Extension Program

2022

A Guideline for Selecting the Best Soil Moisture Sensors

Mohammad Valipour, PhD, Assistant Professor, Kentucky State University

Introduction

Although only 8.2% of farms in Kentucky have been equipped with soil moisture sensors (SMS), this amount is higher than in 27 other states in the US (Kukal et al., 2020). On most Kentucky farms (more than 90%), irrigation scheduling has been applied based on empirical methods including condition of crop, soil type, personal calendar schedule, and when neighbors begin (United States Department of Agriculture (USDA), 2018). Most SMS are easy to use and affordable for monitoring soil moisture and irrigation scheduling. SMS can help farmers to enhance water use efficiency (WUE) and increase profits while substantially reducing use of water and energy. In addition, using SMS decreases erosion and leaching of chemicals such as pesticides, fertilizers, and soil nutrients. The other advantage of SMS is helping farmers apply water at optimum rates and only where needed. Blonquist Jr. et al. (2006) evaluated the performance of SMS under Kentucky Turf Grass in a silt loam soil. Relative to evapotranspiration (ET) based irrigation recommendations, the SMS helped to save 16% less irrigation water. Also, relative to a fixed irrigation rate of 2 inches per week, the SMS helped to apply 53% less water. In a newer study, Viloria and Dunwell (2017) demonstrated that SMS can help reduce irrigation water applications by 40 - 70% of irrigation without using SMS. It is worth mentioning that an average 50% reduction in irrigation can save over 43 million gallons of water and \$6,500 in pumping cost annually in Kentucky (Viloria and Dunwell, 2017). Using SMS in fields can increase average net income by almost 20% and, for some crops like soybean, by 64% (Payero, 2021). Now the question is which SMS is best for Kentucky conditions. The objective of this fact sheet is to present a guideline for Kentucky farmers to select the best SMS for their farms with respect to various factors, including cost, soil texture, soil salinity, ease of operation, calibration, and performance accuracy.

Plant available water (PAW)

SMS usually measure soil volumetric water content. PAW is the water available to support plant growth. PAW as a function of soil volumetric water content. PAW capacity equals the difference between field capacity (FC) and the permanent wilting point (PWP). FC is the maximum amount of water that a soil can hold. The PWP is the point when there is no water available to the plant. Table 1 shows FC, PWP, and PAW capacity for different types of soil texture. For example, a silt loam soil (which is the predominant soil texture in Kentucky) has a PAW capacity of 0.21. For a plant with a root depth of 19 inches, the total amount of PAW capacity is 0.21 x 19 = 3.99, or about 4 inches. If more than 4 inches of water is applied to the soil, either by precipitation or by irrigation, some of it will be lost to runoff or leaching below the root zone. According to Table 1, loam and silt loam soils are the best for agriculture because they have the highest PAW capacity compared to the other types of soil texture. In fact, loam and silt loam soils drain excess water quickly and are not prone to drought conditions (Easton and Bock, 2016). Table 1. FC, PWP, and PAW based on soil texture (adapted from Easton and Bock, 2016).

Top 10 SMS

The top 10 SMS that are highly used for *irrigation* purposes are tensiometers, granular matrix sensors (GMS), heat dissipating sensors (HDS), capacitance, time domain reflectometers (TDR), frequency domain reflector (FDR), amplitude domain reflector (ADR), time domain transmission (TDT), neutron probe, and wireless sensors. Tables 2 and 3 show a short description, photos, pros, cons, and an estimated price of each SMS. It should be taken into account that "the best" SMS is not the same for all farmers based on their different point of views and limitations. For example, a farmer with a budget limitation has to opt for

a sensor that is economical and cost efficient even if it is not as accurate as the other SMS. Another example is a farmer whose priority is to deal with saline and/or heavy soils,

Table 1. FC, PWP, and PAW based on soil texture (adapted from Easton and Bock, 2016)

Soil	FC	PWP	PAW capacity
texture	(inch of water/inch of soil)	(inch of water/inch of soil)	(inch of water/inch of soil)
Sand	0.05	0.12	0.07
Sandy loam	0.09	0.21	0.12
Loam	0.16	0.36	0.20
Silt loam	0.18	0.39	0.21
Clay loam	0.24	0.39	0.15
Silty clay	0.26	0.39	0.13
Clay	0.27	0.39	0.12

Table 2. A short description and photos of highly used SMS for *irrigation* (adapted from Kelleners et al., 2004; Ling, 2004; Sample et al., 2016; Labodia Prima, 2019; SwitchDoc, 2019; Edaphic, 2021; Robinson, 2021; Trellise 2021)

SMS	Short description	Photo
Tensiometer	Soil particles hold water through either tension or <i>adhesion</i> . Tensiometers are SMS that measure the tension between soil particles and water molecules. In order for plants to access this water, they must overcome the tension to draw water molecules away from the soil particles and into their roots. The soil <i>matric potential</i> or <i>soil moisture</i> tension reading tells how hard the plant must work to extract water. A tensiometer is a vertical, water-filled tube with a porous tip that is inserted into the soil at recommended depths;	Photo
	the soil draws water out of the porous tip of the sealed tube, creating a vacu- um. Drier soils create a stronger vacu- um since water molecules are harder to pull off soil particles.	

SMS	Short description	Photo
GMS	GMS consist of <i>electrodes</i> contained in a granular matrix that is enclosed within a gypsum solution, a membrane, and a metal case. Gypsum buffers salinity effects. A small charge is placed on the <i>electrodes</i> , and <i>electrical resistance</i> through GMS is measured. As water is used by plants or as the <i>soil moisture</i> decreases, water is drawn from GMS and resistance increases. Conversely, as <i>soil moisture</i> increases, resistance decreases.	
HDS	In HDS, the air temperature in a porous block is measured before and after a small heat pulse is applied to it. The amount of heat flow from the pulse-heated point is mostly proportional to the amount of water contained within the porous material. That means a wet material will heat up slower than a dry one. This rise in air temperature (or the cooling) is measured with an accurate air temperature sensor located at the sensor tip.	
Capacitance	A capacitive does not measure moisture directly (pure water does not conduct electricity well); instead, it measures the <i>ions</i> that are dissolved in the moisture. These <i>ions</i> and their concentration can be affected by a number of factors; for example, adding fertilizer will decrease the resistance of the soil.	
TDR	TDR consists of parallel rods, acting as transmission lines, where a <i>voltage</i> is launched along the rods and reflected back to TDR for analysis. The velocity of the <i>voltage</i> pulse along the rod is related to the <i>dielectric permittivity</i> of the soil. The velocity of the pulse for wet soils is slower than that of drier soils.	
FDR	FDR uses an <i>oscillator</i> to propagate an <i>electromagnetic signal</i> through either a metal tine or other wave guide. The difference between the output wave and the return wave frequency is measured to determine <i>soil moisture</i> .	

SMS	Short description	Photo
ADR	ADR uses an <i>oscillator</i> to generate an <i>electromagnetic signal</i> at a consistent frequency, which is transmitted through a central signal rod, using outer rods as an electrical shield. The <i>electromagnetic signal</i> is partially reflected by areas of the medium with different water content, producing a measurable <i>voltage</i> standing wave.	
TDT	TDT measures the transmission of a pulse along a looped, or closed circuit, rod. TDT measures the time taken for an <i>electromagnetic signal</i> to travel along a given length of a transmission line in the soil. With TDT, a step pulse with a fast rise time is transmitted into a transmission line. The step pulse travels down the transmission line, and a <i>voltage</i> is detected at the other end of the transmission line. A pulse measured via TDT will be slower in wetter soils rather than drier soils.	
Neutron probe	Neutron probe consists of a neutron source, detector, and an electronic counting scale. Measurements at desired depths are made by lowering the probe into an access tube installed vertically in the soil. This radioactive probe emits high-energy neutrons in all directions into the soil. When these neutrons collide with hydrogen atoms in the soil, the velocity of the neutron is attenuated or slowed down. The rate of attenuation is dependent on the amount of water present.	The same state of the same sta
Wireless sensors	Wireless sensors are buried under the soil at the start of the growing season with the logo facing towards the sky. The sensors are located in the silver bands surrounding the device. Throughout the growing season, it sends data back to a phone application over a low power cellular data that can operate at significant distances from cellphone towers.	Soiltech

Table 3. Pros, cons, and an estimated price of SMS highly used for *irrigation* (adapted from Ling, 2004; Munoz-Carpena, 2004; Maughan et al., 2015; Sample et al., 2016; Labodia Prima, 2019; Sharma, 2019; Singh et al., 2019; Risinger, 2021; Robinson, 2021)

SMS	Pros	Cons	Price
Tensiometer	Capable of high frequency sampling	Maintenance to replace water in tube could be	\$75 - \$125 per sensor
	Salinity buffering	necessary	\$140 - \$155 for transducer
		Might have to be reset	
	Large sensing area (8 - inch diameter)	frequently in coarse or swelling soils	
	Direct water potential reading for <i>irrigation</i>	Less intuitive due to negative relationship between	
	scheduling	volumetric water content and tensiometer reading	
	Continuous measurements at same location	Requiring periodic service	
	Not affected by salinity	Not useful in drier soil conditions	
	Comes in different lengths	Not suitable for fine soil texture	
		Slow response time to soil water changes	
		Do not withstand cold soil temperatures	
		Manual readings and data collection	
		Should be read daily when crop water use is high to	
		detect false readings due to	
		air bubbles entering the tube	
		Soil temperatures below freezing can also seriously	
		damage the tensiometer. It	
		must be removed from the ground and stored before	
		soil temperatures drop to	
		freezing	

SMS	Pros	Cons	Price
GMS	Can measure a large area (8 - inch diameter)	Relatively inaccurate	\$40 - \$70 per sensor
	Can be used in moderately saline soils	Performs poorly in sandy soils due to slow reaction time (water moves fast in	\$250 for handheld meter \$500 -\$600 for data logger
	Can be used to sense wet or dry <i>soil moisture</i> readings for <i>irrigation</i>	sandy soils) Performs poorly in soils that shrink/swell	
	If soil does not dry out, little maintenance is required	Susceptible to drying; must be dug out and solution reset when this occurs	
	Good accuracy in medium to fine soils	Relatively slow response time to soil water changes	
	Data can be logged and retrieved remotely Applicable for large soil	Sensitive to soil temperature and high salinity	
	tension range	Calibration in needed for each soil type	
	Continuous measurement at same location	Slow reaction time	
	Can be permanently installed (through winter) in soil	Does not work well in sandy soils	
	No water refilling needed		
HDS	Sensor output is independent to <i>electrical conductivity</i> (EC) value. Measurements not affected by salts in the soil Small size Very accurate	HDS have a larger power requirement compared to other sensor types for frequent observations Very small area of influence Slow reaction time Does not work well in sandy	\$280 - \$380 per sensor \$300 - \$440 for excitation module \$2,000 - \$2,500 for data logger
	Soil/site <i>calibration</i> usually not required Remote access of data	soils	
	available Measures a wide range of matric potential		
	Long lasting, with no maintenance required		

SMS	Pros	Cons	Price
Capacitance	Not only avoids corrosion of the probe but also gives a better reading of the moisture content of the soil as opposed to using resistive SMS Since the contacts (the plus plate and the minus plate of the capacitor) are not exposed to the soil, there is no corrosion of the sensor itself Response time is very fast Remote access available Very accurate after calibration Can be used in moderate	Small sensing area Affected by soil conditions - high salinity, clay content, and soil temperature Site/soil specific calibration preferred	\$10 - \$350 per sensor \$500 -\$2,500 for data logger
TDR	saline soils Can be used without calibration to specific soils; however, it reduces accuracy Not easily influenced by moderate saline soil conditions until the signal disappears Can remain in soil through winter. Continuous measurements can be collected with data logger Accurate with soil-specific calibration (2 - 3% error) Easily expanded by multiplexing Wide variety of probe configurations Minimal soil disturbance	Need for good contact between sensor and soil Small sensing area (2.4-inch diameter) Might have limited applicability in highly saline or heavy clay soils Calibration is needed for soils with tightly held water Takes time to install because you must dig a trench rather than a hole Uses a lot of power (large rechargeable batteries) Soil-specific calibration required for soils having large amounts of bound water (i.e., those with high organic matter content)	\$250 - \$350 per sensor \$1,000 - \$3,500 for data logger

SMS	Pros	Cons	Price
FDR	Accurate with soil-specific calibration (1% error)	Calibration is necessary	\$60 - \$300 per sensor
	Can be used in saline soils	Sensitive to soil temperature	\$500 - \$3,500 for data logger
	Can be used in sanne sons	Small sensing area (3.2-inch	\$2,000 - \$3,000 for access
	High resolution signal	diameter)	tube installation kit
	Can be connected to	Need for good contact	
	conventional loggers	between FDR and soil	
	Flexibility in probe design	Sensitive to air gaps	
		Sensitive to clay soils	
ADR	Accurate with soil-specific	Calibration to a specific soil	\$200 - \$350 per sensor
	calibration (1% error) and without soil-specific	is recommended	\$1,000 - \$3,500 for data
	calibration (5% error)	Volume of measurement is relatively small (≈0.3 in3)	logger
	Can be used in high saline soils	Sensitive to air gaps, stones, or water traveling through	
	Minimal soil disturbance	channels separate from soil matrix	
	Soil temperature does not interfere with signal		
TDT	Accurate (2% error)	Sensitive to soil compaction	\$220 - \$300 per sensor
	Large sensing volume (≈30 in3)	Soil disturbance during installation	\$1,000 - \$3,500 for data logger
	Low power consumption	Reduced precision because the generated pulse is distorted during transmission	
		Needs to be permanently installed in the field	

SMS	Pros	Cons	Price
Neutron probe	Samples a relatively large	Soil/site specific calibration	\$10,000 - \$15,000 per sensor
	area	usually required	\$25 - \$30 for access tubes
	C 11 1		
	One sensor for all sites and	Contains radioactive	
	depths	material (safety hazard). Licensing and certified	
	Unaffected by salinity and	personnel is required. Even	
	air gaps around access tube	at 16-inch depth, radiation	
	an gapo around access tase	losses through soil surface	
	Robust and the most	have been detected	
	accurate SMS (0.5% error)		
		Manual reading and	
	Large soil sensing volume	recording (≈3 minutes per	
	(sphere of influence with 32	access tube)	
	- inch diameter, depending		
	on moisture content)	Not good at shallow	
	Stable soil amonife	depths (less than 6 inches).	
	Stable soil - specific calibration	Readings close to the soil surface are difficult and not	
	Canoranon	accurate	
		decurate	
		Heavy, cumbersome	
		instrument	
		The sphere of influence	
		may vary according to the	
		following reasons: a) It	
		increases as the soil dries	
		because the hydrogen concentration reduces,	
		so that the probability of	
		collision is smaller and	
		thereby fast neutrons can	
		travel further from the	
		source. b) It is smaller in fine	
		texture soils because they	
		can hold more water, thus	
		the probability of collision is	
		higher. c) If there are layers	
		with large differences in	
		water content due to changes in soil physical properties,	
		the sphere of influence can	
		have a distorted shape	
	l .	mave a distorted strape	

SMS	Pros	Cons	Price
SMS Wireless sensors	Environmental and business benefits across the crop life cycle: growth, harvest, transportation and storage Wireless sensors deliver real- time, actionable information to help agriculture professionals increase yields and crop quality whilst	Cons Some farmers either do not have access to smartphones or do not want to use them for <i>soil moisture</i> monitoring	Price \$400 - \$450 per sensor \$80 - \$100 for data services
	reducing inputs Reduce trips to the field No need to data logger		

SMS installation

We should install stationary SMS either horizontally (by digging a hole) or vertically (by using an *auger*) between crops within a crop row at their certain depths. It is recommended to install SMS at different depths and locations in the farm. The best layout is to place SMS in pairs at 1/3 and 2/3 the root depth and at least at two extra locations in the field (Sharma, 2019). Table 4 represents the maximum root depth for different plants.

It is also recommended to flag the SMS in order to help operators/labors see where they are. It can help them to prevent damage to SMS. Some farms contain more than one *soil texture*. In those farms, it is recommended that each *soil texture* be equipped with SMS and managed separately for *irrigation*. The best way to accurately identify soil properties is to have several soil samples and test them in soil laboratories. Nevertheless, some farmers are not interested in spending money for soil sampling. Another option is using Web Soil Survey produced by USDA (https://websoilsurvey.sc.egov.usda.gov/).

Figure 1 illustrates an example of using Web Soil Survey to identify soil properties for a field located in Hardin and Larue Counties in Kentucky. The first step is to define the area of interest (AOI) using a polygon icon (Figure 1a). After separating the field, the next step is using Soil Map to identify *soil texture* (Figure 1b). As can be seen, *soil texture* for 41.3% of the area is loam and the rest is three different types of silt loam (i.e., Gatton, Newark, and Sonora). As we discussed in this fact sheet, loam and silt loam are the best soils for agriculture with respect to their highest PAW compared to the other types of *soil texture*. Finally, in Figure 1c we can check soil salinity by using Soil Chemical Properties, which show no salinity for the selected field.

In Figure 1, since neither soil salinity nor heavy *soil texture* is a limitation, all SMS (Table 2) will work accurately in the selected field. If our soil was saline and/or we had a heavy *soil texture* (i.e., clay loam, silty clay, and clay based on Table 1), we would not use those SMS that are sensitive to salinity and/or heavy *soil texture* (Table 3). For more information about how to use Soil Web Survey, this link will be helpful, particularly for beginners who have less experience working with datasets: https://websoilsurvey.nrcs.usda.gov/app/Help/WSS_HomePage_HowTo_3_0.pdf

Table 4. Maximum rooting depth for different plants (adapted from Allen et al., 1998)

Plant	Root depth (in)	Plant	Root depth (in)	Plant	Root depth (in)	
Small vegetables						
Broccoli and Brussel Sprouts	16 - 24	Cabbage	20 - 30	Carrots	20 - 40	
Cauliflower	16 - 28	Celery, Garlic, Spinach, Radishes, and Lettuce	12 - 20	Onions	12 - 24	
		Big veg	getables			
Egg Plant and Cucumber	28 - 47	Sweet Peppers	20 - 40	Tomato	28 - 60	
Sweet Melons and Watermelon	35 - 60	Cantaloupe, Pumpkin and Winter Squash	39 - 60	Squash and Zucchini	24 -40	
		Perennial	vegetables			
Artichokes and Asparagus	24 - 70	Mint	16 - 30	Strawberries	8 - 12	
		Fora	ages			
Alfalfa	40 - 118	Bermuda	40 - 60	Clover	24 - 35	
Rye grass	24 - 40	Grazing Pasture	20 - 60	Turf Grass	20 - 40	
		Roots an	d Tubers			
Cassava	28 - 40	Turnip	20 - 40	Potato	16 - 24	
Sweet Potato	40 - 60	Sugar Beet	28 - 47	Parsnip	24 - 40	
		Legu	imes			
Beans	20 - 47	Peas	24 - 40	Peanut	20 - 40	
Lentil	24 - 30	Soybeans	24 - 50	Green Gram	20 - 43	
		Fiber	Crops			
Cotton	40 - 67	Flax	40 - 60	Sisal	20 - 40	
		Oil c		,		
Ricinus and safflower	40 - 80	Rapeseed, Canola, and Sesame	20 - 40	Sunflower	30 - 60	
		Cer	eals			
Barley, Oates, Spring Wheat	40 - 60	Winter Wheat	60 - 70	Millet and Sorghum	40 - 80	
Field Maize	40 - 67	Sweet Maize	30 - 47	Rice	20 - 40	
	Fruit trees					
Almonds, Apples, Cherries, Pears, Apricots, and Peaches	40 - 118	Avocado	20 - 40	Conifer Trees and Pistachio	35 - 60	
Kiwi	28 -50	Olives	47 - 67	Walnut	67- 94	
Grapes	40 - 60	Berries	24 - 47	Pawpaw	120 - 240	
Citrus (20% canopy)	30 - 43	Citrus (50% canopy)	43 - 60	Citrus (70% canopy)	47 - 60	

Figure 1. Application of Web Soil Survey, (a) using AOI to define area of interest, (b) using Soil Map to identify *soil texture*, (c) using Soil Chemical Properties to identify soil salinity

Final remarks before selecting SMS

Before selecting the suitable SMS for our farm, we should always pay attention to our budget (capital and annual costs), soil properties, application (i.e., *irrigation* scheduling, monitoring, research), plant type and root depth, accuracy and moisture range required, quality of *irrigation/fertigation* water, and skill level needed for operation and maintenance of SMS. Here are some key notes:

In general, higher frequency measurements result in higher quality data, but also higher SMS cost. Indeed, true value in SMS comes from the optimization of the balance between performance accuracy and price.

Variations of salinity in the soil will often result in perplexing SMS readings and frustration for farmers. For salinity conditions, TDR, FDR, and capacitance are better choices but still need careful consideration, as not all of them are created equally.

It is recommended to apply data loggers to store and log the soil data. This will help in data interpretation and quick decision making. However, if the labor cost is more affordable than the data logger cost, manual recording of SMS could be an option too.

The highest performance will be achieved if we use SMS with *irrigation* scheduling, apps, weather stations and other *best management practices* (BMPs).

We should read SMS daily if we use data loggers and every two to three days if we record the data manually.

Reading catalogues and manuals of SMS helps for a precise *calibration* and installation.

It is recommended for *irrigation* to replenish the *soil moisture* to less than FC. Then there will be some room for potential precipitation, especially for the days when *irrigation* is necessary but there is a moderate to high chance of precipitation.

Glossary

Adhesion - A process in which soils hold water molecules rigidly at their soil-water interfaces.

Auger - A spiral-shaped tool to drill holes into the

ground.

Best management practices - Ways to manage our land and activities to mitigate pollution of surface and groundwater near us.

Calibration - Process of configuring a device to provide a result for a sample within an acceptable range.

Canopy - Aboveground portion of a plant, formed by the collection of individual plant crowns.

Dielectric permittivity - Ability of a substance to hold an electrical charge.

Electrical conductivity - A measure of the resistance of a particular material to an electric current.

Electrical resistance - A measure of opposition to the flow of electric current.

Electrodes - Conductors that are used to make contact with a nonmetallic part of a circuit.

Electromagnetic signal - One of the waves that is propagated by simultaneous periodic variations of electric and magnetic field intensity and that include radio waves, infrared, visible light, ultraviolet, X-rays, and gamma rays.

Erosion - Geological process in which earthen materials are worn away and transported by natural forces, especially by water.

Evapotranspiration - A process by which water is transferred from the land to the atmosphere, by water leaving the soil (evaporation) and water lost through plant leaves and stems (transpiration).

Fertigation – A process of using the existing *irrigation* system in a field to inject plants with the required fertilizers.

Ions - Group of atoms that bears one or more positive or negative electrical charges.

Irrigation - A controlled agricultural process during which water is applied to soil to assist in the production of crops, also known as watering.

Leaching - Infiltrated water moving down through the

soil profile before it can be used by crops.

Matric potential - A negative pressure or suction head that is read by SMS and reflects the ability of soil to either retain or move water as a result of suction exerted by soil pores.

Oscillator - A device that converts direct current (DC) from a power supply to an alternating current (AC) signal.

Runoff - Water that originates from landscapes during precipitation/*irrigation* events that does not infiltrate into the soil.

Soil moisture sensors - Devices that are used to measure water content of a soil by various techniques.

Soil texture - Composition of soil based on its particle sizes.

Voltage - Difference of potential energy between two points on a circuit.

Volumetric - A unit of measurement in which the water in a soil is described by the percent volume of the space that the water is occupying.

Water use efficiency - Percentage of applied water used by the intended plant.

References

Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), p.D05109.

Blonquist Jr, J.M., Jones, S.B. and Robinson, D.A., 2006. Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor. Agricultural Water Management, 84(1-2), pp.153-165.

Easton, Z.M., Bock, E., 2016. Soil and soil water relationships. Virginia Cooperative Extension.

Edaphic, 2021. Time domain reflectometry (TDR). https://edaphic.com.au/soil-water-compendium/time-domain-reflectometry-tdr/ (accessed 4/20/2022).

Kelleners, T.J., Soppe, R.W.O., Robinson, D.A., Schaap, M.G., Ayars, J.E. and Skaggs, T.H., 2004. Calibration of capacitance probe sensors using electric circuit theory. Soil Science Society of America Journal, 68(2), pp.430-439.

Kukal, M.S., Irmak, S. and Sharma, K., 2020. Development and application of a performance and operational feasibility guide to facilitate adoption of soil moisture sensors. Sustainability, 12(1), p.321.

Labodia Prima, 2019. The Standing Wave (ADR) Measurement Principle. https://www.labodiaprima.com/amplitude-domain-reflectometry-adr (accessed 4/20/2022).

Ling, P., 2004. A review of soil moisture sensors. Assn. Flor. Prof. Bull, 886, pp.22-23.

Maughan, T., Allen, L.N. and Drost, D., 2015. Soil moisture measurement and sensors for irrigation management.

Munoz-Carpena, R., 2004. Field devices for monitoring soil water content. EDIS, 2004(8).

Panuska, J. Sanford, S., and Newenhouse, A., 2015. Methods to monitor soil moisture. University of Wisconsin--Extension, Cooperative Extension.

Payero, J., 2021. Clemson research finds using soil moisture sensors can increase farmer's net income. https://news.clemson.edu/clemson-research-finds-using-soil-moisture-sensors-can-increase-farmers-net-income/ (accessed 4/20/2022).

Risinger, M., 2021. Tensiometer. https://sanangelo.tamu.edu/extension/agronomy/agronomy-publications/grain-sorghum-production-in-west-central-texas/how-to-estimate-soil-moisture-by-feel/soil-moisture-measuring-devices/tensiometer/ (accessed 1/10/2022).

Robinson, A., 2021. Soiltech Wireless Makes Moisture Sensors for Less. https://spudsmart.com/soiltech-wireless-makes-moisture-sensors-for-less/ (accessed 4/20/2022).

Sample, D.J., Owen, J.S., Fields, J.S. and Barlow, S., 2016. Understanding soil moisture sensors: A fact sheet for irrigation professionals in Virginia.

Sharma, V., 2019. Soil moisture sensors for irrigation scheduling. https://extension.umn.edu/irrigation/soil-moisture-sensors-irrigation-scheduling#pros%2C-cons-and-costs-of-soil-water-tension-sensors-1751861 (accessed 4/20/2022).

Singh, A.K., Bhardwaj, A.K., Verma, C.L., Mishra, V.K., Singh, A.K., Arora, S., Sharma, N. and Ojha, R.P., 2019. Soil moisture sensing techniques for scheduling irrigation. J. Soil Salin. Water Qual, 11, 68-76.

SwitchDoc, 2019. Tutorial - Using Capacitive Soil Moisture Sensors on the Raspberry Pi. https://www.switchdoc.com/2020/06/tutorial-capacitive-moisture-sensor-grove/ (accessed 4/20/2022).

Trellis, 2021. 3 Types of Soil Moisture Sensors - Which is Best For You? https://mytrellis.com/blog/smstypes (accessed 4/20/2022).

Viloria, Z., Dunwell, W., 2017. Soil moisture sensors to schedule irrigation in container blueberry production. Kentucky Nursery LISTSERV Bulletin. UKAg Extension.

USDA, 2018. Census of Agriculture. 2018 Irrigation and Water Management Survey. (accessed 4/20/2022).

